
Complex Number 

Roots of unity and Factorization 

1. If  1, ω, ω2  are the cube roots of unity, prove that : 

(i) (a + ω – ω2) (a – ω + ω2) = a2 + 3,  

(ii) (1 + iω – ω2) ( 1 – ω + iω2) = 2, 

(iii) (a + b) (a + bω) (a + bω2) = a3 + b3, 

(iv) (a + b + c) (a + bω + cω2) (a + bω2 + cω) = a3 + b3 + c3 – 3abc , 

2. Let  ω  be a complex cube root of unity and  n  is a positive integer, but not a multiple of  3 . 

(i) Prove that  1 + ωn + ω2n = 0 . 

(ii) Prove that  x2 + y2 + z2 – xy – yz – zx  has a linear factor  x + ωy + ω2z . 

(iii) Deduce that  x2 + y2 + z2 – xy – yz – zx  is a factor of  (x – y)n + (y – z)n + (z – x)n . 

3. If  ω  is one of the complex cube roots of unity, show that 

 (x + a + b) (x + ωa + ω2b) (x + ω2a + ωb) ≡ x3 – 3abx + a3 + b3 . 

Hence solve the equation  x3 – px + q = 0  by putting  p = 3ab  and  q = a3 + b3 . 

4. If  (1 + x)n = c0 + c1x + c2x2 + … + cnxn ,  n  being a positive integer,  

(a) By setting  x = 1, ω , ω2  in turn and adding show that , c0 + c3 + c6 +…  = ⎟
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5. Find the quadratic factors with real coefficients of 

(i) x8 – 4x4 + 16    

(ii) x6 + 8x3 + 64 

6. Factorize  x9 – 1  and prove that 
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1x

1
n2 −

   in partial fractions with real linear and quadratic denominators. 
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8. Solve the equation  (z + 1)8 – z8 = 0 , and prove that  ( ) ( )
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Hence show that  ( )
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9. Show that all the non-zero roots of the equation  (1 + x)2n+1 = (1 – x)2n+1  are given by   

 
1n2

r
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± ,  where  r  has values  1, 2, … , n. 

By putting  n = 2  or otherwise, show that  5
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10. Show that every root of the equation  (z + 1)2n + (z – 1)2n = 0 , where  n  is a positive integer, is purely 

imaginary. 

If the roots are represented in the Argand diagram by points  P1 , P2 , … , P2n  ,  prove that,  

if  O  is the origin,  OP1
2 + OP2

2 + … + OP2n
2 = 2n(2n – 1) . 

11. If  n  is a positive integer, prove that 
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Deduce from  (i)  that, if  x ≠ 0 ,  ( ) ⎟
⎠
⎞

⎜
⎝
⎛ π

−+Π−=− −
−

=

−−

n
r

cos2xxxxxx 1
1n

1r

1nn  . 

Use the last result to prove that  
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12. Prove that  ⎥⎦
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Deduce the following results : 
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(iii) From  (i), deduce, by logarithmic differentiation, 
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13. (i) If  n  is a positive integer, prove that 
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(ii) By taking  x = a = 1  and in turn,  θ = 2α  and  θ = 2α – π , show that the value of 
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is  22 – 2n  when  n  is odd, and  23 – 2n sin2 nα  when  n  is even. 

(iii) Using derivatives, deduce from (i) that 
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(iv) By taking the derivatives again and substituting a particular value for  x , show that,  

 when  cos nθ ≠ 1,   
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(v) In  (i) , take  x = i ,  a = 1  and  n  even, deduce that, if  k  is a positive integer,  

  ( ) θ−−=⎟
⎠
⎞

⎜
⎝
⎛ π−

+θ⎟
⎠
⎞

⎜
⎝
⎛ π

+θ⎟
⎠
⎞

⎜
⎝
⎛ π

+θθ− k2cos1
k

)1k2(
cos...

k
2

cos
k

coscos2 k1k2  . 

 and deduce that 
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(vi) Prove that :  
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14. The  n  points  A0 , A1 , A2 , … , An-1  are the vertices of a regular polygon of  n  sides which is 

inscribed in a circle center  O , radius  a .  P  is a point such that  OP = x  and the angle  POA0 = θ . 
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